
Previously, this problem was solved by the Jacobi method with 10 iterations.



Subsequent iterations give the value in the below table:



Note: Jacobi method requires twice as many iterations for the same accuracy.

Writing the Gauss-Seidel method in matrix form:

Multiplying both sides of equation,

By aii and collecting all kth iterate terms, results in:





Eigenvalues and Eigenvectors





So,

Similarly,





Relaxation Techniques for solving Linear Systems

Relaxation Techniques are used to accelerate Convergence.



Suppose that         is an approximate solution defined  by:( )kx
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The corresponding residual vector is,
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In particular, the ith component of residual vector is,
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If we modify the above equation as,
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For the Gauss-Seidel method, we are interested  in choices  of             .      

This method is Called SOR (Successive Over-Relaxation) method.    
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Combination of the above equation and equation (7.15) results in,
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Thus, at the end of each iteration of the Gauss-Seidel method           is

modified using the above equation. 
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To determine the matrix form of the SOR method, we rewrite  equation

(*) as,





For the SOR method, the Gauss-Seidel equations are modified as,
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